
Theor Chim Acta (1993) 86:497-510 Theoretica
Chimica Acta
© Springer-Verlag 1993

SCF calculations on MIMD type parallel computers

A. Burkhardt, U. Wcdig, and H. G. v. Schnering
Max-Planck-Institut ffir Festk6rperforsehung, Heisenbergstr. 1, D-70569 Stuttgart, Germany

Received May 11, 1992/Accepted April 27, 1993

Summary. One of the key methods in quantum chemistry, the Hartree-Fock SCF
method, is performing poorly on typical vector supercomputers. A significant
acceleration of calculations of this type requires the development and implementa-
tion of a parallel SCF algorithm. In this paper various parallelization strategies are
discussed comparing local and global communication management as well as
sequential and distributed Fock-matrix updates. Programs based on these algo-
rithms are bench marked on transputer networks and two IBM MIMD proto-
types. The portability of the code is demonstrated with the portation of the initial
Helios version to other operating systems like Parallel VM/SP and PAR1X. Based
on the PVM libraries, a platform-independent version has been developed for
heterogeneous workstation clusters as well as for massively parallel computers.

Key words: Parallel - MIMD - SCF - Massively parallel computers

I Introduction

The rapid development of more and more powerful computers is a prerequisite for
the successful application of quantum theory on various chemical systems. There-
fore, it is not surprising that vector supercomputers dominated this area in the last
decade. During this period, however, the peak performance of vector supercom-
puters was only tripled, whereas microprocessor performance grew by several
orders of magnitude. This stagnation in the supercomputer area led to the concept
of parallel computers consisting of several processors. Based on this idea a variety
of different architectures (shared memory, distributed memory) and concepts
(SIMD, MIMD) for parallel computers have been proposed. The best suited
concept for large scale numerical calculations is still under discussion. The trend,
however, goes towards MIMD-type parallel computers with distributed memory,
since only this architecture offers sufficient scalability. The transputer chips de-
veloped by INMOS combine a RISC processor with floating point unit and fast
communication hardware [1]. Therefore transputer networks may act as proto-
types for M1MD type parallel computers.

One of the key methods in quantum chemistry, the Hartree-Fock SCF method,
is performing poorly on typical vector supercomputers. A significant acceleration
of calculations of this type requires the parallelization of the SCF algorithm and
the implementation on a powerful parallel computer.

498 A. Burkhardt et al.

2 Parallelization strategies

The Hartree Fock approximation describes an electron in the field of the nuclei and
an averaged field of all other electrons. The so-called Fock-matrix contains all
these interactions. The Fock-matrix is constructed from the one-electron-integrals
h and the two-electron-integrals g in conjuction with the one particle density
matrix P:

i i F pq = hpq + P,s(2gqrps - gqrsp).
r S

The most time-consuming step in this process is the calculation of the two-electron
integrals and the associated Fock-matrix update. Once F is constructed, the
generalized eigenvalue problem:

F C = eSC.

must be solved, where S denotes the overlap matrix. With the new eigenvectors
C a new density matrix is constructed and the process is repeated until the
differences between two iterations are sufficiently small. In the conventional or
indirect SCF algorithm the two-electron-integrals are computed once and stored
on mass storage devices. Therefore, available disk space and I/O bandwith are
limiting factors for conventional SCF calculations. These limitations are overcome
in the direct SCF algorithm [2, 3], where the two-electron-integrals are recal-
culated each iteration. The price, however, is a significantly increased computa-
tional effort.

The parallelization of the two-electron-integral evaluation is the critical step
towards a parallel direct SCF-program, since this is the most time consuming step
for the direct SCF process. The calculation of different integrals is independent and
therefore distributable to several processors. The use of integral batches as smallest
job item allows the efficient use of intermediate results and turns out to be
advantageous over the use of single integrals.

The computational effort for the calculation of one integral batch depends
strongly on the/-values of the associated basis functions. This wide granularity
range makes a predetermined distribution of tasks difficult. The farming concept
introduced by Hey promises a better load balance under these circumstances [4, 5].
Farming is a synonym for dynamic load balancing based on a random distribution
of tasks using the same algorithm but different input data (SPMD - Single
Program Multiple Data). One client process generates the job items and distributes
them randomly to the server tasks. The application of the farming concept is
restricted to those cases where the number of data sets significantly exceeds the
number of nodes. As outlined below, this constraint will become important for
relatively small calculations and large processor numbers.

The dynamic farming strategy for the parallel integral evaluation avoids the
problems other groups report with deterministic distribution approaches [6, 7, 8].
There are, however, still several choices for communication management:

• Global communicat ion management: One distinct process (Load Balancer) distrib-
utes the jobs to all server processes. This process receives the results of all server
processes and schedules new jobs to the idle processes.

• Loca l communicat ion management: Each server task decides whether to process
a given job or whether to sent it to another server task.

SCF calculations on MIMD type parallel computers 499

Another decision to be made concerns the processing of the calculated integrals:

• Sequential Fock-matrix update: All calculated integrals are returned to the client
task. The client task evaluates the Fock matrix using the integrals and the
density matrix.

• Distributed Fock-matrix update: Each server task receives the actual density
matrix and builds its own partial Fock-matrix from the calculated integrals.

In the next section we will describe the implementation and performance of a direct
SCF program on a transputer network and another MIMD computer. All four
possible combinations of the communication strategies outlined above have been
studied, using two benchmark molecules. The first benchmark is the calculation of
the two-electron integrals and the duration of one complete SCF iteration for
trans-formic acid using a DZP basis set (58 basis functions). For powerful networks
and scalar computers P453, again with a DZP basis set (168 basis functions) or even
a DZ2P basis set (210 basis functions), is a more adequate benchmark.

3 The Helios implementation

At the beginning of the project (fall 1988), the INMOS Transputer Development
System (TDS) was the one and only development environment available for
transputer networks [9, 10]. All parallel processes had to be programmed in
OCCAM [11]. However, the inclusion of FORTRAN subroutines was possible.
Under TDS the programmer is responsible for the communication and the distri-
bution of the tasks. Operating system functions like access to external mass storage,
keyboard or screen are not available on the server nodes. As a consequence, any
program running under TDS has the complete control of the arithmetic and
communication facilities and the interprocessor communication is handled very
efficiently. Starting from existing FORTRAN integral routines 1-12] we developed
a distributed direct SCF program using OCCAM as programming language.
Cooper and Hiller reported recently about a similar approach using the MEIKO
computing surface [13]. In addition to the farming concept we used a sequential
Fock-matrix update and a local communication management based on bidirec-
tional pipelines. Computational details and the performance of this program
version have been described in [14]. Although the interprocessor communication
was heavy, this DSCF program performed surprisingly well. We measured a worst-
case speedup of 7.1 for a complete SCF iteration using eight processors. This
corresponds to an overall efficiency of 90 percent. Despite these good results, the
program development under TDS turned out to be a dead end. The language
OCCAM was not accepted as a standard for parallel programming. The majority
of programmers in the scientific community continued to develop programs in
FORTRAN. Since the integration of new developments is a crucial point for
scientific applications, we looked for a way to develop parallel programs exclus-
ively or at least mainly in FORTRAN.

The distributed operating system Helios [15] promised the program develop-
ment with conventional languages. Under Helios, any sequential part of a parallel
program is called a 'task'. The parallelism of the program as a whole is not defined
within the tasks, but with a meta-language. This 'Component Distribution
Language' (CDL) is derived from the pipelining familiar to UNIX users. CDL,

500 A. Burkhardt et al.

however, offers not only constructors for unidirectional pipelining, but also bidirec-
tional pipelining and even a constructor for a complete farm. The routines for the
inter-task communication and process synchronization can be written in C, where
the required extensions are part of library. Programs written this way are hardware
independent, since HELIOS is mapping the virtual streams to the actual network
topology. The Helios command form a subset of UNIX and the libraries follow the
POSIX standard. Our first experiences with Helios are described in [16].

3.1 Global communication management and sequential Fock-matrix update

Since farming was supported by CDL, the portation of the TDS-based program
was supposed to be easy. CDL farms, however, use a global communication
management. One process, called 'Load Balancer', handles all communication
between client and server processes. Furthermore, all server processes are directly
connected to the Load Balancer. Since the Load Balancer shipped with the Helios
versions 1.1 and 1.15 did not meet the specifications in the documentation,
we were forced to develop a new Load Balancer (lb). The internal structure of
the lb task is shown in Fig. 1. All processes shown are executed quasiparallely
on one node. The Read-Client process is storing data items from the client
process into the input buffer. One of the Send-to-Server processes associated
with each server reads the item and transfers it to a server task. The results - in our
case the calculated integrals - are read by the associated Receive-from-Server
process and stored into the output buffer. Finally, the Write-Client process
transfers the contents of the output buffer back to the client task. To ensure the
validity of the buffer contents, the access to both buffers is controlled with
semaphores.

The OCCAM-DSCF program described in 1-14] communicates single integrals
and batch-index quadruples. Using the same approach under Helios leads to
disaster. A network of 14 processors is not significantly faster than a single

LOAD BALANCER

CONTROL

l
DSCF

ReadCl i en t Send to Server ~ q ~ INTEGRAL 11

21 I -; ~1- ~ INTEGRAL
I OutPut buffer I]-" l- | I

Write Client ive from I I--M I
S e r v e r [- - - - ~ N T E G r t A L 31

Fig. 1. Helios DSCF-farm with, for example, 3 servers. The load balancer task consists of several
processes running concurrently on One network node. The function of each process is described in
the text

SCF calculations on M I M D type parallel computers 501

processor. The reason for the failure of this fine granular communication is the
presence of the operating system. The Helios kernel is situated between application
and hardware. This additional software layer causes significantly longer startup
times for the interprocessor communication. In this case, coarse granular commun-
ication like the transmission of a few large data items is favorable. As a conse-
quence, the next program version transmitted packets of batch indices and packets
of integrals. Using an optimized packet size for batch and integral packets
the speedup of the calculation of the two-electron-integrals reached ten using
14 server processors. The speedup changes with varying packet size are in-
structive. Rising the number of integrals in the packets returned to the client
increases the speedup, since the influence of the startup time is minimized. Rising
the number of batch index quadruples in the packets results in a sharp rise of the
speedup for up to five quadruples. Any further increase results in a slow decline of
the overall Speedup. At first glance this behaviour is surprising, since the use of
larger packets minimizes the interprocesser communication. Using larger job
packets, however, decreases the absolute number of jobs. Therefore the overall load
balance of the farm is reduced, since - as mentioned above - in efficient farming
applications, the number of jobs must significantly exceed the number of server
tasks.

Even with optimized packet sizes, the average processor utilization of this
DSCF version is only about 70% for 14 nodes. This fact leads to the conclusions
that global communication management is a bottleneck for any network with
relatively slow interprocessor communication. As a consequence we implemented
an alternate farming mechanism under Helios based on bidirectional pipelines,
described in the following section. During the portation of the program to the IBM
PPCS, however, the global communication management is retested in a more
suitable hard- and software environment.

II co,,ec,or onp,pe

Input-Buffer S~ I Buffer

Integral-Program

1~ Out:!-!uffer ~ [

Fig. 2. One server task in the Helios pipeline-DSCF-farm: All processes shown are executed quasiparal-
lely on each server node. The interaction of the processes is described in the text

502 A. Burkhardt et al.

3.2 Local communication management and sequential Fock-Matrix update

A farming approach based on bidirectional pipelines should distribute the com-
munication management more evenly within the network. Therefore, a set of
augmenting subroutines for the local communication management has been de-
veloped. Figure 2 shows all processes executed quasiparallely within one server
task. The basic idea is similar to the OCCAM program version. Data exchange
between the processes, however, is implemented as access to shared local memory,
the so-called input and output buffers. The buffer access is, as in the case of the
/b-version, guarded by semaphores. An index packet from the client task or the
previous server task is read by the Distributor process and written into the input
buffer. Whether the packet is processed by this server task or sent to the next task
in the pipeline depends on the next read request to the input buffer. If the request is
issued by the Integral Program, then the integrals of the batch are calculated by this
server task. If, however, the Buffer process issues the request first, then the packet is
sent further down the pipeline. Any integral packets from the next server processes
in the pipeline are read by the Monpipe process and placed into the output buffer.

Fig. 3. A DSCF-farm based on a bidirectional pipeline.
The C-task generates the index-tuples, the D-task performs
the scalar program parts, the I-tasks are calculating the
integral batches

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Helios pipeline: 2e-integrals of trans-HCOOH (DZP)

i i i i i i i i i i t i i

~ 6

5

4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
i n t e g r a l p r o c e s s o r s

I

17 18

Fig. 4. Optimization of the communication for the Helios pipeline version. With increasing integral
packet and medium index packet size the throughput increases dramatically (details and explanations
are given in the text)

SCF calculations on MIMD type parallel computers 503

The integrals calculated locally are also written into this buffer. The Collector
process sends the collected integrals in the output buffer towards the client task.
Figure 3 shows the general scheme of the resulting distributed DSCF program,
where the C and D processes together form the client task and the integral
calculating server tasks are denoted by I. Each of the server tasks consists of the five
concurrent processes described above.

In the following we will investigate the performance of this approach. For the
same reasons as in the/b-version, the total throughput of the program during the
HCOOH benchmark remains almost constant, if (as shown in Fig. 4, curve 1)
single index quadruples and integrals are transmitted. Assembling larger index
packets results in a slight performance increase (Fig. 4, curve 2). Doing the same
with the calculated integrals, the largest part of the inter-task communication,
increases the speedup significantly. As in the/b-version, the speedup increases with
increasing packet size (Fig. 4, curves 3, 4 and 5). Using the optimal packet sizes,
the average processor utilization for the calculation of the two-electron integrals
of HCOOH reaches 87% (speedup of 14) with 16 server nodes. The average

r Pc/A I

~ LAN

[son ,,28o7q]
Fig. 5. The topology of the 22-transputer-network at the MPI-FKF. The nodes form a torus, disturbed
by the connections to the host machines

504 A. Burkhardt et al.

communication distance between client and server tasks is shortened, if several
pipelines are used. We tested program versions with 16 server tasks aligned in up to
five pipelines and found additional enhancement to the speedup (14.8, Fig. 4,
curve 6) and the average processor utilization (92.5%).

However, on a network of 22 T800 transputers (topology shown in Fig. 5), we
observed a distinct deviation from quasilinear speedup for more than 16 proces-
sors. To ensure the scalability of the program, we ran the HCOOH benchmark on
a PARSYTEC Supercluster with variable topology consisting of 64 T805 trans-
puters. All tested program versions, independent of the number of pipelines,
showed no throughput increase above 16 to 20 processors. Since this saturation
remains almost unchanged by variations of the communication management, the
algorithm itself had to be reanalyzed for bottlenecks. The update of the Fock-
matrix, which to date had been Performed sequentially by the client task, turned
out to be that bottleneck. If the effort to generate the Fock-matrix elements
resulting from one integral is, e.g, five percent of the effort to calculate the integral,
the number of efficiently usable servers is limited to twenty. Above this limit the
integral calculation is faster than the Fock-matrix update and therefore some
processors are idling, because they cannot return their results immediately.

3.3 Local communication management and distributed Fock-Matrix update

Due to the above considerations, the algorithm of our distributed DSCF program
had to be changed. In the new version, each server node builds its own partial
Fock-matrix. At the start of the iteration, the density matrix is broadcasted to all
server tasks. From the density matrix and the calculated integrals each server
builds a partial Fock-matrix. In a synchronization step after the calculation of all
two-electron integrals the client process adds up all partial Fock-matrices. The
resulting flowchart of the new distributed DSCF program is shown in Fig. 6.
Maintaining the pipeline concept, program versions with up to four pipelines have
been developed. Routines for the transmission of complete matrices were added to
the pipeline routines described above. The resulting subroutine package provides
basically the same functions as the set of routines developed by Harrison [17, 18]
for shared memory machines. Similar routines based on the TCP/IP-Protocol were
used successfully for large molecules by Liithi [19] on a wide area network of
Cray-processors and Brode [20] on a cluster of ethernet coupled workstations.

On our relatively small transputer network the new version showed linear
speedup for the two-electron integral calculation. Therefore the benchmarks were
continued on a PARSYTEC Supercluster with 64 processors. With the HCOOH
benchmark used to date, quasilinear speedup for up to thirty nodes has been
observed. Above 48 processors the speedup stagnated, since - as described above
- this example is too small for large networks. With the larger P483 benchmark,
however, we observed nearly linear speedup for up to 48 nodes using four pipelines.
The PARSYTEC Supercluster used in this investigation was heterogeneous, contain-
ing processors of different clock rate and hardware error correction. Therefore, an
effective processor number had to be calculated. This number means the number of
25 MHz TS00's equivalent to the actual network. Using 41.7 effective processors, the
speedup for the calculation of the two-electron integrals was 39. This is equivalent to
an average processor utilization of 93.5 %. The speedup factor for one complete SCF
iteration on 48 processors is reduced due to the scalar program parts (Amdahl's Law)
to 29.1, corresponding to an overall processor utilization of 69.8%.

SCF calculations on MIMD type parallel computers 505

START]

read structure and basis information [

I
indices for all shells I

I

generate pair
I

I
receive partial matrices I
and calculate the sum •

I
calculate start vectors 1

. - A
v 1

calculate density matrix]

I
generate index quadruples [I

I
receive partial Fock-matrices 1~

and calculate the sum [--

t
[calculate the total energy [

transform Fock-matrix
and diagonalize I

I
back}ransform the eigenvectors]

I
continue server programs I

/

,+1

}
I terminate server programs

1

[

--I
vl/

I

r L

I

I r I

STOP

START

I
receive basis information

calculate partial overlap- and
one-electron-matrices

return partial matrices

I-
receive density matrix

I
calculate integrals and

build partial Foek-matrix

return partial Fock-matrices

wait for flag

1 STOP 1

Fig. 6. The flow chart of an distributed SCF-program with distributed Fock-matrix update

4 The IBM PPCS implementation

4.1 Intention

To prove the portability of the programs and algorithms described i n the last
chapter, we adapted the program to the Parallel Processing Compute Server
(PPCS), an experimental MIMD computer developed by IBM. We tested the
program on two PPCS versions. The first version consisted of 16 IBM/370 proces-
sors - the so-called 'Satellites' - connected by a VME bus with an additional/370

506 A. Burkhardt et al.

Table 1. SCF iteration and 2e-integral calculation for P4S 3 (DZP) on the IBM PPCS

SCF iteration Two-electron integrals

Packet Processor Satell i te S p e e d u p Sa te l l i t e S p e e d u p Average
s ize number utilization factor utilization factor execution

and type time

100 16/370 61.73% 9.87 64.32% 10.29 5035.34
500 16/370 89.62% 14.33 95.15% 15.22 3481.55

2000 16/370 93.03% 14.89 99.10% 15.86 3283.36
2000 32/390 84.88% 27.16 93.19% 29.82 374.79
8000 32/390 87.63% 28.04 97.59% 31.22 363.53

processor, the so-called ' l-Host ' . The second version consisted of 32 IBM/390
satellite processors and a /390-I-Host , connected by a fast crosspoint switch. The
operating system was a modified diskless VM/SP and the programming language
was 'Distributed V M / F O R T R A N ' with extensions for parallel programming
(CS/L-Library) [21]. The interprocessor communication is managed exclusively by
the I-Host node. The data to be exchanged is copied to and from C O M M O N
blocks in the I-Host and the addressed satellite.

4.2 Global communication management and distributed Fock-matrix update

The communication routines had to be reformulated using the subroutines of the
CS/L-library. Since both PPCS versions offer sufficient local memory on the
satellite processors, we implemented the distributed Fock-matrix update. Due to
the fact that only the I-Host processor is controlling the communication we had to
use global communication management. The adaption of the Helios program to
the PPCS was finished within 40 man-hours. It is noteworthy that the PPCS
version was written entirely in FORTRAN, mixed language programming as for
Helios was not necessary. On the two PPCS versions we ran the benchmark
calculations described earlier (H C O O H and P453). The formic acid benchmark
turned out to be to small for the PPCS versions, the number of jobs was - as in the
64 transputer network - to small to allow efficient farming. The results of the P4S 3
calculation, which are summarized in Table 1, show the excellent performance of
our DSCF program on the IBM-PPCS.

5 Portability and further benchmarks

From the point of view of a conventional programmer the poor portability
of distributed codes is the main disadvantage of the available massively parallel
systems. Our experience, however, is that once the algorithmic work - namely
the proper division into sequential program modules - is done, porting the
code to various distributed memory computers is relatively easy. Aside from the
previously mentioned PPCS version we have also created a program version for

SCF calculations on MIMD type parallel computers 507

the UNIX-like PARIX Operating system [22] and a hardware independent version
based on PVM (Parallel Virtual Machine) [23]. PVM is a library with communica-
tion primitives for distributed programs which is available for heterogeneous
workstation clusters as well as for massively parallel computers. All these conver-
sions were finished in less than 3 days. The resulting distributed programs are still
scalable up to the theoretical limit set by Amdahls law. On a 128-processor
Parsytec GCel parallel computer a test calculation (P4S3 DZ2P with 210 basis
functions) achieved an efficiency of 80.4% for the calculation of the 2-electron-
integrals. This is equivalent to a speedup of 102. The execution times of the
sequential parts of the SCF cycle for this configuration are of the same magnitude,
reducing the overall efficiency to 44.2%.

To exploit the limits imposed on the problem size by the lack of virtual memory
management on the transputer nodes we performed a test calculation for a large
organic molecule. Restricted to 4 MBytes of local memory we were able to perform
a full SCF-calculation for the rhamnolipide C 3 2 H 5 8 0 1 3 with a split-valence basis
set on carbon and oxygen and a STO-3G basis set on hydrogen, summing up to
463 basis functions. Using nine integral nodes instead of one reduced the execution
time from 39 days to less than 5 days, due to a speedup of 8.7 for the 2e-integral
calculation.

6 Summary

In the previous sections we have described the development of a direct SCF
program for several distributed operating systems and discussed the various

lO00

100

2e-integral calculation of trans-HCOOH (DZP)

L T800 125 MHz~ i {

800 Network

COMPAREX 7 /78

IBM RS6000-320

IBM PPCS 32 / 3 9 0

I I I I I

I0 20 30 40 50 60
integral processocs

Fig. 7. Measured execution times for the calculation of the 2e-integrals of trans-HCOOH (DZP basis
set) compared to the CPU times of various scalar computers. In the PARAMOLE program the MELD
integral routines used in the PARAMELD version are augmented by the fast Obara-Saika integral
routines. SEQUIMOLE is a scalar version of this program

508 A. Burkhardt et al.

parallelization strategies. While global communication management combined
with a distributed Fock-matrix update was successful on the IBM PPCS, global
communication combined with sequential Fock-matrix update turned out to be
less favourable (Helios Load Balancer version). The speedup achievable this way is
limited since the Load Balancer task is a bottleneck for the extensive communica-
tion required. As a consequence, we developed subroutines for local communica-
tion management for Helios and PARIX based on bidirectional pipelines.
Retaining the sequential Fock-matrix update, these versions use up to 16 integral
nodes efficiently and require only 1MB local memory on the integral nodes. To
raise the processor number limit a new algorithm was implemented using a distrib-
uted Fock-matrix update. This version was tested on up to 128 transputers and
shown to use them efficiently. Since two matrices must be held in local memory on
each server processor, the program is limited to 470 basis functions, if 4 MB local
memory are available. The results of the detailed benchmark calculations for this
version in comparison to various workstations and supercomputers is shown in
Fig. 7 and Fig. 8 and the underlying CPU- and execution times are summarized in
Tables 2 and 3.

To prove the portability, the program has been adapted to the transputer
operating system PARIX, Parallel VM/SP and to the PVM library, thus extending
the possible hardware platforms from transputer networks to heterogeneous clus-
ters of workstations and mainframes. The PPCS program portation (5000 lines of
FORTRAN code) was successfully finished within 40 man-hours. All subsequent
transformations needed less than 3 days. This fact demonstrates the value of
transputer networks to develop software for MIMD computers.

The performance of all versions is increasing with growing packet size. There-
fore the program is weli suited for challenging SCF calculations with several
hundreds of basis functions.

100000

10000

1000

2e-integral calculation of P4S3 (DZP)

i

T800 25 MHz

SUN 4128O ""--.............~.......
"COMPAREX 7 / 7 8

IBM RS6000-3~O
" m , . _

IBM PP~ l@ 1~70

TS~
IBM PPCS 32 /390

I O0 I I I I

I 0 20 30 40
integral processors

Fig. 8. Measured execution times for the calculation of the two-electron-integrals of P4S3 (DZP basis
set) compared to the CPU times of various scalar computerS

SCF calculations on MIMD type parallel computers

Table 2. Measured execution times for the calculation of the 2e-integrals of HCOOH
(DZP) compared to the CPU times of various scalar computers

509

Computer Program Time

MicroVAX II MELD 1948.0 a)
Comparex 7/78 MELD 125.0 a)
CRAY-X/MP (1 processor) MELD 76.0 a)

i386/387 25 MHz SEQUIMOLE 3183.5 a)
T800 25 MHz SEQUIMOLE 951.6 a)
SUN 4/280 SEQUIMOLE 458.2 a)
COMPAREX 7/78 SEQUIMOLE 161.1 a)
ESV-3 (MIPS 3000) SEQUIMOLE 154.6 a)
IBM-RS/6000-320 SEQUIMOLE 151.8 a)

IBM PPCS 16/370 PARAMOLE2 106.1 b)
IBM PPCS 32/390 PARAMOLE2 21.7 b)

1 TS00 integral node PARAMELD1 1217.0 b)
11 T800 integral nodes PARAMELD1 122.0 b)
20 T800 integral nodes PARAMELD1 78.0 b)

1 T800 integral nodes PARAMOLE2 1111.1 c)
12 T800 integral nodes PARAMOLE2 93,4 c)
24 T800 integral nodes PARAMOLE2 53,3 c)
32 T800 integral nodes PARAMOLE2 42.3 c)
48 T800 integral nodes PARAMOLE2 35,4 c)
63 TS00 integral nodes PARAMOLE2 34.7 c)

CPU times.
b execution times

execution times
25 MHz T800.

(fixed topology).
on a PARSYTEC Supercluster 2 (variable topology), scaled to

Table 3. Measured execution times for the calculation of the 2e-integrals of
P4S3 (DZP) compared to the CPU times of various scalar computers

Computer Program Time

T800 25 MHz SEQUIMOLE 42373.4 a)
SUN 4/280 SEQUIMOLE 18683.2 at
COMPAREX 7/78 SEQUIMOLE 8104.1 aJ
ESV-3 (MIPS 3000) SEQUIMOLE 6750.2 al
IBM-RS/6000-320 SEQUIMOLE 6215,7 al

IBM PPCS 16/370 PARAMOLE2 3283.4 bI
IBM PPCS 32/390 PARAMOLE2 363.5 b]

1 T800 integral node PARAMOLE2 42422.5 c/
7.8 eft. T800 nodes PARAMOLE2 5471.4 c)
27.8 eft. T800 nodes PARAMOLE2 1601.7 cl
41.7 eft. T800 nodes PARAMOLE2 1087.8 c~

a CPU times.
b execution times (fixed topology).
c execution times on a PARSYTEC Supercluster 2 (variable topology), scaled
to 25 MHz T800.

510 A. Burkhardt et al.

Since, up to now, parallel comput ing is still widely an experimental area, we
summarize our experiences with the following guidelines for the paral lel izat ion of
existing software using the farming concept:

• The opt imizat ion and the min imiza t ion of the scalar p rogram parts is required
to maximize the n u m b e r of server processes (Amdahl 's Law).

• Addi t ional opt imizat ion of the communica t ion is the crucial step towards an
efficiently dis tr ibuted program for M I M D computers.

• If the n u m b e r of jobs is reduced due to the communica t ion optimizat ion, the
farm cannot retain a good load balance. The losses due to a load inbalance,
however, are usually larger than losses due to communica t ion overhead.

Acknowledgements. We wish to express our gratitude to PARSYTEC GmbH in Aachen and Dr. Peter
Blrmecke for the permission to test our program on a PARSYTEC Supercluster 2. We are also indebted
to Dr. R. Janssen, Dr. W. Koch and U. Schauer from the IBM Scientific Center in Heidelberg and
Dr. H. Bleher from the IBM Development Laboratory in Brblingen for support and the access to the
IBM-PPCS prototypes.

References

1. INMOS Ltd (1987) The Transputer Family 1987, INMOS Product Information
2. Almlrf J, Faegri Jr K, Korsell K (1982) J Comp Chem 3:385
3. Almlrf J, Taylor PR (1984) Dykstra C (Ed.) Advanced theories and computational approaches to

the electronic structure of molecules, NATO ASI Series 133:107, Reidel, Dordrecht
4. Hey AJG (1989) Comp Phys Comm 56:1
5. Glendinning I, Hey AJG (1987) Comp Phys Comm 45:367
6. Guest MF, Harrison RJ, Lenthe JH van, Corler LCH van (1987) Theor Chim Acta 71:117
7. Dupuis M, Watts JD (1987) Theor Chim Acta 71:91
8. Gadre SR, Kulkarni SA, Limaye AC, Shirsat RN (1991) Z Phys D 18:357
9. Transputer Development System (D 700 C) Inmos Ltd Bristol

10. Multitool 5.0 Parsytec GmbH, Aachen
11. INMOS Ltd. (1988) Occam 2 Reference Manual, Prentice Hall International Series in Computer

Science. Prentice Hall, London
12. McMurchie L, Elbert ST, Langhoff SR, Davidson ER et al. Program MELD, University of

Washington, Seattle. Modified version Wedig U
13. Cooper MD, Hiller IH (1991) J Comput-Aided Mol Des 5:171
14. Wedig U, Burkhardt A, Schnering HG von (1989) Z Phys D 13:377
15. Perihelion Software Ltd (1989) The helios operating system. Prentice Hall, London
16. Wedig U, Burkhardt A, Schnering HG yon (1990) Harms U (ed) Supercomputer and chemistry.

Springer, Berlin
17. Harrison RJ, Kendall RA (1991) Theor Chim Acta 79:337
18. Harrison RJ (1991) Intl J Quantum Chem 40:847
19. L~thi HP, Mertz JE, Feyereisen MW, Alml6f JE (1992) J Comput Chem 13:160
20. Brode S (1991) Harms U (ed) Supercomputers in Chemistry 2:61, Springer, Berlin
21. Ammann EM, Berbec RR, Bozman G, Faix M, Goldrian GA, Pershing JA, Ruvolo-Chong J, Scholz

F (1991) IBM J Res Develop 35:653
22. PARIX Operating System, Parsytec GmbH, Aachen
23. Geist A, Beguelin A, Dongarra J, Jiang W, Manchek R, Sunderam V (1993) PVM 3.0 User's Guide

and Reference Manual, Oak Ridge National Laboratory, Oak Ridge TN

