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Summary. One of the key methods in quantum chemistry, the Hartree-Fock SCF 
method, is performing poorly on typical vector supercomputers. A significant 
acceleration of calculations of this type requires the development and implementa- 
tion of a parallel SCF algorithm. In this paper various parallelization strategies are 
discussed comparing local and global communication management as well as 
sequential and distributed Fock-matrix updates. Programs based on these algo- 
rithms are bench marked on transputer networks and two IBM MIMD proto- 
types. The portability of the code is demonstrated with the portation of the initial 
Helios version to other operating systems like Parallel VM/SP and PAR1X. Based 
on the PVM libraries, a platform-independent version has been developed for 
heterogeneous workstation clusters as well as for massively parallel computers. 
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I Introduction 

The rapid development of more and more powerful computers is a prerequisite for 
the successful application of quantum theory on various chemical systems. There- 
fore, it is not surprising that vector supercomputers dominated this area in the last 
decade. During this period, however, the peak performance of vector supercom- 
puters was only tripled, whereas microprocessor performance grew by several 
orders of magnitude. This stagnation in the supercomputer area led to the concept 
of parallel computers consisting of several processors. Based on this idea a variety 
of different architectures (shared memory, distributed memory) and concepts 
(SIMD, MIMD) for parallel computers have been proposed. The best suited 
concept for large scale numerical calculations is still under discussion. The trend, 
however, goes towards MIMD-type parallel computers with distributed memory, 
since only this architecture offers sufficient scalability. The transputer chips de- 
veloped by INMOS combine a RISC processor with floating point unit and fast 
communication hardware [1]. Therefore transputer networks may act as proto- 
types for M1MD type parallel computers. 

One of the key methods in quantum chemistry, the Hartree-Fock SCF method, 
is performing poorly on typical vector supercomputers. A significant acceleration 
of calculations of this type requires the parallelization of the SCF algorithm and 
the implementation on a powerful parallel computer. 
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2 Parallelization strategies 

The Hartree Fock approximation describes an electron in the field of the nuclei and 
an averaged field of all other electrons. The so-called Fock-matrix contains all 
these interactions. The Fock-matrix is constructed from the one-electron-integrals 
h and the two-electron-integrals g in conjuction with the one particle density 
matrix P: 

i i  F pq = hpq + P,s(2gqrps - gqrsp). 
r S 

The most time-consuming step in this process is the calculation of the two-electron 
integrals and the associated Fock-matrix update. Once F is constructed, the 
generalized eigenvalue problem: 

F C  = eSC.  

must be solved, where S denotes the overlap matrix. With the new eigenvectors 
C a new density matrix is constructed and the process is repeated until the 
differences between two iterations are sufficiently small. In the conventional or 
indirect SCF algorithm the two-electron-integrals are computed once and stored 
on mass storage devices. Therefore, available disk space and I/O bandwith are 
limiting factors for conventional SCF calculations. These limitations are overcome 
in the direct SCF algorithm [2, 3], where the two-electron-integrals are recal- 
culated each iteration. The price, however, is a significantly increased computa- 
tional effort. 

The parallelization of the two-electron-integral evaluation is the critical step 
towards a parallel direct SCF-program, since this is the most time consuming step 
for the direct SCF process. The calculation of different integrals is independent and 
therefore distributable to several processors. The use of integral batches as smallest 
job item allows the efficient use of intermediate results and turns out to be 
advantageous over the use of single integrals. 

The computational effort for the calculation of one integral batch depends 
strongly on the/-values of the associated basis functions. This wide granularity 
range makes a predetermined distribution of tasks difficult. The farming concept 
introduced by Hey promises a better load balance under these circumstances [4, 5]. 
Farming is a synonym for dynamic load balancing based on a random distribution 
of tasks using the same algorithm but different input data (SPMD - Single 
Program Multiple Data). One client process generates the job items and distributes 
them randomly to the server tasks. The application of the farming concept is 
restricted to those cases where the number of data sets significantly exceeds the 
number of nodes. As outlined below, this constraint will become important for 
relatively small calculations and large processor numbers. 

The dynamic farming strategy for the parallel integral evaluation avoids the 
problems other groups report with deterministic distribution approaches [6, 7, 8]. 
There are, however, still several choices for communication management: 

• Global communicat ion  management:  One distinct process (Load Balancer) distrib- 
utes the jobs to all server processes. This process receives the results of all server 
processes and schedules new jobs to the idle processes. 

• Loca l  communicat ion  management:  Each server task decides whether to process 
a given job or whether to sent it to another server task. 
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Another decision to be made concerns the processing of the calculated integrals: 

• Sequential Fock-matrix update: All calculated integrals are returned to the client 
task. The client task evaluates the Fock matrix using the integrals and the 
density matrix. 

• Distributed Fock-matrix update: Each server task receives the actual density 
matrix and builds its own partial Fock-matrix from the calculated integrals. 

In the next section we will describe the implementation and performance of a direct 
SCF program on a transputer network and another MIMD computer. All four 
possible combinations of the communication strategies outlined above have been 
studied, using two benchmark molecules. The first benchmark is the calculation of 
the two-electron integrals and the duration of one complete SCF iteration for 
trans-formic acid using a DZP basis set (58 basis functions). For powerful networks 
and scalar computers P453, again with a DZP basis set (168 basis functions) or even 
a DZ2P basis set (210 basis functions), is a more adequate benchmark. 

3 The Helios implementation 

At the beginning of the project (fall 1988), the INMOS Transputer Development 
System (TDS) was the one and only development environment available for 
transputer networks [9, 10]. All parallel processes had to be programmed in 
OCCAM [11]. However, the inclusion of FORTRAN subroutines was possible. 
Under TDS the programmer is responsible for the communication and the distri- 
bution of the tasks. Operating system functions like access to external mass storage, 
keyboard or screen are not available on the server nodes. As a consequence, any 
program running under TDS has the complete control of the arithmetic and 
communication facilities and the interprocessor communication is handled very 
efficiently. Starting from existing FORTRAN integral routines 1-12] we developed 
a distributed direct SCF program using OCCAM as programming language. 
Cooper and Hiller reported recently about a similar approach using the MEIKO 
computing surface [13]. In addition to the farming concept we used a sequential 
Fock-matrix update and a local communication management based on bidirec- 
tional pipelines. Computational details and the performance of this program 
version have been described in [14]. Although the interprocessor communication 
was heavy, this DSCF program performed surprisingly well. We measured a worst- 
case speedup of 7.1 for a complete SCF iteration using eight processors. This 
corresponds to an overall efficiency of 90 percent. Despite these good results, the 
program development under TDS turned out to be a dead end. The language 
OCCAM was not accepted as a standard for parallel programming. The majority 
of programmers in the scientific community continued to develop programs in 
FORTRAN. Since the integration of new developments is a crucial point for 
scientific applications, we looked for a way to develop parallel programs exclus- 
ively or at least mainly in FORTRAN. 

The distributed operating system Helios [15] promised the program develop- 
ment with conventional languages. Under Helios, any sequential part of a parallel 
program is called a 'task'. The parallelism of the program as a whole is not defined 
within the tasks, but with a meta-language. This 'Component Distribution 
Language' (CDL) is derived from the pipelining familiar to UNIX users. CDL, 
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however, offers not only constructors for unidirectional pipelining, but also bidirec- 
tional pipelining and even a constructor for a complete farm. The routines for the 
inter-task communication and process synchronization can be written in C, where 
the required extensions are part of library. Programs written this way are hardware 
independent, since HELIOS is mapping the virtual streams to the actual network 
topology. The Helios command form a subset of UNIX and the libraries follow the 
POSIX standard. Our first experiences with Helios are described in [16]. 

3.1 Global communication management and sequential Fock-matrix update 

Since farming was supported by CDL, the portation of the TDS-based program 
was supposed to be easy. CDL farms, however, use a global communication 
management. One process, called 'Load Balancer', handles all communication 
between client and server processes. Furthermore, all server processes are directly 
connected to the Load Balancer. Since the Load Balancer shipped with the Helios 
versions 1.1 and 1.15 did not meet the specifications in the documentation, 
we were forced to develop a new Load Balancer (lb). The internal structure of 
the lb task is shown in Fig. 1. All processes shown are executed quasiparallely 
on one node. The Read-Client process is storing data items from the client 
process into the input buffer. One of the Send-to-Server processes associated 
with each server reads the item and transfers it to a server task. The results - in our 
case the calculated integrals - are read by the associated Receive-from-Server 
process and stored into the output buffer. Finally, the Write-Client process 
transfers the contents of the output buffer back to the client task. To ensure the 
validity of the buffer contents, the access to both buffers is controlled with 
semaphores. 

The OCCAM-DSCF program described in 1-14] communicates single integrals 
and batch-index quadruples. Using the same approach under Helios leads to 
disaster. A network of 14 processors is not significantly faster than a single 

LOAD BALANCER 

CONTROL 

l 
DSCF 

ReadCl i en t  Send to Server ~ q ~  INTEGRAL 11 

21 I -; ~1- ~ INTEGRAL 
I OutPut buffer I ]-" l-  | I 

Write Client ive from I I--M I 
S e r v e r  [- - - -  ~ N T E G r t A L  31 

Fig. 1. Helios DSCF-farm with, for example, 3 servers. The load balancer task consists of several 
processes running concurrently on One network node. The function of each process is described in 
the text 
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processor. The reason for the failure of this fine granular communication is the 
presence of the operating system. The Helios kernel is situated between application 
and hardware. This additional software layer causes significantly longer startup 
times for the interprocessor communication. In this case, coarse granular commun- 
ication like the transmission of a few large data items is favorable. As a conse- 
quence, the next program version transmitted packets of batch indices and packets 
of integrals. Using an optimized packet size for batch and integral packets 
the speedup of the calculation of the two-electron-integrals reached ten using 
14 server processors. The speedup changes with varying packet size are in- 
structive. Rising the number of integrals in the packets returned to the client 
increases the speedup, since the influence of the startup time is minimized. Rising 
the number of batch index quadruples in the packets results in a sharp rise of the 
speedup for up to five quadruples. Any further increase results in a slow decline of 
the overall Speedup. At first glance this behaviour is surprising, since the use of 
larger packets minimizes the interprocesser communication. Using larger job 
packets, however, decreases the absolute number of jobs. Therefore the overall load 
balance of the farm is reduced, since - as mentioned above - in efficient farming 
applications, the number of jobs must significantly exceed the number of server 
tasks. 

Even with optimized packet sizes, the average processor utilization of this 
DSCF version is only about 70% for 14 nodes. This fact leads to the conclusions 
that global communication management is a bottleneck for any network with 
relatively slow interprocessor communication. As a consequence we implemented 
an alternate farming mechanism under Helios based on bidirectional pipelines, 
described in the following section. During the portation of the program to the IBM 
PPCS, however, the global communication management is retested in a more 
suitable hard- and software environment. 

II co,,ec,or  onp,pe 

Input-Buffer S~ I Buffer 

Integral-Program 

1~ Out:!-!uffer ~ [  

Fig. 2. One server task in the Helios pipeline-DSCF-farm: All processes shown are executed quasiparal- 
lely on each server node. The interaction of the processes is described in the text 
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3.2 Local communication management and sequential Fock-Matrix update 

A farming approach based on bidirectional pipelines should distribute the com- 
munication management more evenly within the network. Therefore, a set of 
augmenting subroutines for the local communication management has been de- 
veloped. Figure 2 shows all processes executed quasiparallely within one server 
task. The basic idea is similar to the OCCAM program version. Data exchange 
between the processes, however, is implemented as access to shared local memory, 
the so-called input and output buffers. The buffer access is, as in the case of the 
/b-version, guarded by semaphores. An index packet from the client task or the 
previous server task is read by the Distributor process and written into the input 
buffer. Whether the packet is processed by this server task or sent to the next task 
in the pipeline depends on the next read request to the input buffer. If the request is 
issued by the Integral Program, then the integrals of the batch are calculated by this 
server task. If, however, the Buffer process issues the request first, then the packet is 
sent further down the pipeline. Any integral packets from the next server processes 
in the pipeline are read by the Monpipe process and placed into the output buffer. 

Fig. 3. A DSCF-farm based on a bidirectional pipeline. 
The C-task generates the index-tuples, the D-task performs 
the scalar program parts, the I-tasks are calculating the 
integral batches 
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Fig. 4. Optimization of the communication for the Helios pipeline version. With increasing integral 
packet and medium index packet size the throughput increases dramatically (details and explanations 
are given in the text) 
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The integrals calculated locally are also written into this buffer. The Collector 
process sends the collected integrals in the output buffer towards the client task. 
Figure 3 shows the general scheme of the resulting distributed DSCF program, 
where the C and D processes together form the client task and the integral 
calculating server tasks are denoted by I. Each of the server tasks consists of the five 
concurrent processes described above. 

In the following we will investigate the performance of this approach. For the 
same reasons as in the/b-version, the total throughput of the program during the 
HCOOH benchmark remains almost constant, if (as shown in Fig. 4, curve 1) 
single index quadruples and integrals are transmitted. Assembling larger index 
packets results in a slight performance increase (Fig. 4, curve 2). Doing the same 
with the calculated integrals, the largest part of the inter-task communication, 
increases the speedup significantly. As in the/b-version, the speedup increases with 
increasing packet size (Fig. 4, curves 3, 4 and 5). Using the optimal packet sizes, 
the average processor utilization for the calculation of the two-electron integrals 
of HCOOH reaches 87% (speedup of 14) with 16 server nodes. The average 

r Pc/A  I 

~ LAN 

[son ,,28o7q ] 
Fig. 5. The topology of the 22-transputer-network at the MPI-FKF. The nodes form a torus, disturbed 
by the connections to the host machines 
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communication distance between client and server tasks is shortened, if several 
pipelines are used. We tested program versions with 16 server tasks aligned in up to 
five pipelines and found additional enhancement to the speedup (14.8, Fig. 4, 
curve 6) and the average processor utilization (92.5%). 

However, on a network of 22 T800 transputers (topology shown in Fig. 5), we 
observed a distinct deviation from quasilinear speedup for more than 16 proces- 
sors. To ensure the scalability of the program, we ran the HCOOH benchmark on 
a PARSYTEC Supercluster with variable topology consisting of 64 T805 trans- 
puters. All tested program versions, independent of the number of pipelines, 
showed no throughput increase above 16 to 20 processors. Since this saturation 
remains almost unchanged by variations of the communication management, the 
algorithm itself had to be reanalyzed for bottlenecks. The update of the Fock- 
matrix, which to date had been Performed sequentially by the client task, turned 
out to be that bottleneck. If the effort to generate the Fock-matrix elements 
resulting from one integral is, e.g, five percent of the effort to calculate the integral, 
the number of efficiently usable servers is limited to twenty. Above this limit the 
integral calculation is faster than the Fock-matrix update and therefore some 
processors are idling, because they cannot return their results immediately. 

3.3 Local communication management and distributed Fock-Matrix update 

Due to the above considerations, the algorithm of our distributed DSCF program 
had to be changed. In the new version, each server node builds its own partial 
Fock-matrix. At the start of the iteration, the density matrix is broadcasted to all 
server tasks. From the density matrix and the calculated integrals each server 
builds a partial Fock-matrix. In a synchronization step after the calculation of all 
two-electron integrals the client process adds up all partial Fock-matrices. The 
resulting flowchart of the new distributed DSCF program is shown in Fig. 6. 
Maintaining the pipeline concept, program versions with up to four pipelines have 
been developed. Routines for the transmission of complete matrices were added to 
the pipeline routines described above. The resulting subroutine package provides 
basically the same functions as the set of routines developed by Harrison [17, 18] 
for shared memory machines. Similar routines based on the TCP/IP-Protocol were 
used successfully for large molecules by Liithi [19] on a wide area network of 
Cray-processors and Brode [20] on a cluster of ethernet coupled workstations. 

On our relatively small transputer network the new version showed linear 
speedup for the two-electron integral calculation. Therefore the benchmarks were 
continued on a PARSYTEC Supercluster with 64 processors. With the HCOOH 
benchmark used to date, quasilinear speedup for up  to thirty nodes has been 
observed. Above 48 processors the speedup stagnated, since - as described above 
- this example is too small for large networks. With the larger P483 benchmark, 
however, we observed nearly linear speedup for up to 48 nodes using four pipelines. 
The PARSYTEC Supercluster used in this investigation was heterogeneous, contain- 
ing processors of different clock rate and hardware error correction. Therefore, an 
effective processor number had to be calculated. This number means the number of 
25 MHz TS00's equivalent to the actual network. Using 41.7 effective processors, the 
speedup for the calculation of the two-electron integrals was 39. This is equivalent to 
an average processor utilization of 93.5 %. The speedup factor for one complete SCF 
iteration on 48 processors is reduced due to the scalar program parts (Amdahl's Law) 
to 29.1, corresponding to an overall processor utilization of 69.8%. 
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Fig. 6. The flow chart of an distributed SCF-program with distributed Fock-matrix update 

4 The IBM PPCS implementation 

4.1 Intention 

To prove the portability of the programs and algorithms described i n  the last 
chapter, we adapted the program to the Parallel Processing Compute Server 
(PPCS), an experimental MIMD computer developed by IBM. We tested the 
program on two PPCS versions. The first version consisted of 16 IBM/370 proces- 
sors - the so-called 'Satellites' - connected by a VME bus with an additional/370 
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Table 1. SCF iteration and 2e-integral calculation for P4S 3 (DZP) on the IBM PPCS 

SCF iteration Two-electron integrals 

Packet Processor Satell i te S p e e d u p  Sa te l l i t e  S p e e d u p  Average 
s ize  number utilization factor utilization factor execution 

and type time 

100 16/370 61.73% 9.87 64.32% 10.29 5035.34 
500 16/370 89.62% 14.33 95.15% 15.22 3481.55 

2000 16/370 93.03% 14.89 99.10% 15.86 3283.36 
2000 32/390 84.88% 27.16 93.19% 29.82 374.79 
8000 32/390 87.63% 28.04 97.59% 31.22 363.53 

processor, the so-called ' l-Host ' .  The second version consisted of 32 IBM/390 
satellite processors and a /390-I-Host ,  connected by a fast crosspoint switch. The 
operating system was a modified diskless VM/SP and the programming language 
was 'Distributed V M / F O R T R A N '  with extensions for parallel programming 
(CS/L-Library) [21]. The interprocessor communication is managed exclusively by 
the I-Host  node. The data to be exchanged is copied to and from C O M M O N  
blocks in the I-Host  and the addressed satellite. 

4.2 Global communication management and distributed Fock-matrix update 

The communication routines had to be reformulated using the subroutines of the 
CS/L-library. Since both PPCS versions offer sufficient local memory on the 
satellite processors, we implemented the distributed Fock-matrix update. Due to 
the fact that only the I-Host  processor is controlling the communication we had to 
use global communication management.  The adaption of the Helios program to 
the PPCS was finished within 40 man-hours. It  is noteworthy that the PPCS 
version was written entirely in FORTRAN,  mixed language programming as for 
Helios was not necessary. On the two PPCS versions we ran the benchmark 
calculations described earlier ( H C O O H  and P453). The formic acid benchmark 
turned out to be to small for the PPCS versions, the number of jobs was - as in the 
64 transputer network - to small to allow efficient farming. The results of the P4S 3 
calculation, which are summarized in Table 1, show the excellent performance of 
our DSCF program on the IBM-PPCS.  

5 Portability and further benchmarks 

From the point of view of a conventional programmer  the poor  portability 
of distributed codes is the main disadvantage of the available massively parallel 
systems. Our  experience, however, is that once the algorithmic work - namely 
the proper division into sequential program modules - is done, porting the 
code to various distributed memory  computers is relatively easy. Aside from the 
previously mentioned PPCS version we have also created a program version for 



SCF calculations on MIMD type parallel computers 507 

the UNIX-like PARIX Operating system [22] and a hardware independent version 
based on PVM (Parallel Virtual Machine) [23]. PVM is a library with communica- 
tion primitives for distributed programs which is available for heterogeneous 
workstation clusters as well as for massively parallel computers. All these conver- 
sions were finished in less than 3 days. The resulting distributed programs are still 
scalable up to the theoretical limit set by Amdahls law. On a 128-processor 
Parsytec GCel parallel computer a test calculation (P4S3 DZ2P with 210 basis 
functions) achieved an efficiency of 80.4% for the calculation of the 2-electron- 
integrals. This is equivalent to a speedup of 102. The execution times of the 
sequential parts of the SCF cycle for this configuration are of the same magnitude, 
reducing the overall efficiency to 44.2%. 

To exploit the limits imposed on the problem size by the lack of virtual memory 
management on the transputer nodes we performed a test calculation for a large 
organic molecule. Restricted to 4 MBytes of local memory we were able to perform 
a full SCF-calculation for the rhamnolipide C 3 2 H 5 8 0 1 3  with a split-valence basis 
set on carbon and oxygen and a STO-3G basis set on hydrogen, summing up to 
463 basis functions. Using nine integral nodes instead of one reduced the execution 
time from 39 days to less than 5 days, due to a speedup of 8.7 for the 2e-integral 
calculation. 

6 Summary 

In the previous sections we have described the development of a direct SCF 
program for several distributed operating systems and discussed the various 
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Fig. 7. Measured execution times for the calculation of the 2e-integrals of trans-HCOOH (DZP basis 
set) compared to the CPU times of various scalar computers. In the PARAMOLE program the MELD 
integral routines used in the PARAMELD version are augmented by the fast Obara-Saika integral 
routines. SEQUIMOLE is a scalar version of this program 
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parallelization strategies. While global communication management combined 
with a distributed Fock-matrix update was successful on the IBM PPCS, global 
communication combined with sequential Fock-matrix update turned out to be 
less favourable (Helios Load Balancer version). The speedup achievable this way is 
limited since the Load Balancer task is a bottleneck for the extensive communica- 
tion required. As a consequence, we developed subroutines for local communica- 
tion management for Helios and PARIX based on bidirectional pipelines. 
Retaining the sequential Fock-matrix update, these versions use up to 16 integral 
nodes efficiently and require only 1MB local memory on the integral nodes. To 
raise the processor number limit a new algorithm was implemented using a distrib- 
uted Fock-matrix update. This version was tested on up to 128 transputers and 
shown to use them efficiently. Since two matrices must be held in local memory on 
each server processor, the program is limited to 470 basis functions, if 4 MB local 
memory are available. The results of the detailed benchmark calculations for this 
version in comparison to various workstations and supercomputers is shown in 
Fig. 7 and Fig. 8 and the underlying CPU- and execution times are summarized in 
Tables 2 and 3. 

To prove the portability, the program has been adapted to the transputer 
operating system PARIX, Parallel VM/SP and to the PVM library, thus extending 
the possible hardware platforms from transputer networks to heterogeneous clus- 
ters of workstations and mainframes. The PPCS program portation (5000 lines of 
FORTRAN code) was successfully finished within 40 man-hours. All subsequent 
transformations needed less than 3 days. This fact demonstrates the value of 
transputer networks to develop software for MIMD computers. 

The performance of all versions is increasing with growing packet size. There- 
fore the program is weli suited for challenging SCF calculations with several 
hundreds of basis functions. 
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Fig. 8. Measured execution times for the calculation of the two-electron-integrals of P4S3 (DZP basis 
set) compared to the CPU times of various scalar computerS 
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Table 2. Measured execution times for the calculation of the 2e-integrals of HCOOH 
(DZP) compared to the CPU times of various scalar computers 

509 

Computer Program Time 

MicroVAX II MELD 1948.0 a) 
Comparex 7/78 MELD 125.0 a) 
CRAY-X/MP (1 processor) MELD 76.0 a) 

i386/387 25 MHz SEQUIMOLE 3183.5 a) 
T800 25 MHz SEQUIMOLE 951.6 a) 
SUN 4/280 SEQUIMOLE 458.2 a) 
COMPAREX 7/78 SEQUIMOLE 161.1 a) 
ESV-3 (MIPS 3000) SEQUIMOLE 154.6 a) 
IBM-RS/6000-320 SEQUIMOLE 151.8 a) 

IBM PPCS 16/370 PARAMOLE2 106.1 b) 
IBM PPCS 32/390 PARAMOLE2 21.7 b) 

1 TS00 integral node PARAMELD1 1217.0 b) 
11 T800 integral nodes PARAMELD1 122.0 b) 
20 T800 integral nodes PARAMELD1 78.0 b) 

1 T800 integral nodes PARAMOLE2 1111.1 c) 
12 T800 integral nodes PARAMOLE2 93,4 c) 
24 T800 integral nodes PARAMOLE2 53,3 c) 
32 T800 integral nodes PARAMOLE2 42.3 c) 
48 T800 integral nodes PARAMOLE2 35,4 c) 
63 TS00 integral nodes PARAMOLE2 34.7 c) 

CPU times. 
b execution times 

execution times 
25 MHz T800. 

(fixed topology). 
on a PARSYTEC Supercluster 2 (variable topology), scaled to 

Table 3. Measured execution times for the calculation of the 2e-integrals of 
P4S3 (DZP) compared to the CPU times of various scalar computers 

Computer Program Time 

T800 25 MHz SEQUIMOLE 42373.4 a) 
SUN 4/280 SEQUIMOLE 18683.2 at 
COMPAREX 7/78 SEQUIMOLE 8104.1 aJ 
ESV-3 (MIPS 3000) SEQUIMOLE 6750.2 al 
IBM-RS/6000-320 SEQUIMOLE 6215,7 al 

IBM PPCS 16/370 PARAMOLE2 3283.4 bI 
IBM PPCS 32/390 PARAMOLE2 363.5 b] 

1 T800 integral node PARAMOLE2 42422.5 c/ 
7.8 eft. T800 nodes PARAMOLE2 5471.4 c) 
27.8 eft. T800 nodes PARAMOLE2 1601.7 cl 
41.7 eft. T800 nodes PARAMOLE2 1087.8 c~ 

a CPU times. 
b execution times (fixed topology). 
c execution times on a PARSYTEC Supercluster 2 (variable topology), scaled 
to 25 MHz T800. 
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Since, up to now, parallel comput ing  is still widely an  experimental  area, we 
summarize  our  experiences with the following guidelines for the paral lel izat ion of 
existing software using the farming concept: 

• The opt imizat ion  and  the min imiza t ion  of the scalar p rogram parts is required 
to maximize the n u m b e r  of server processes (Amdahl 's  Law). 

• Addi t ional  opt imizat ion of the communica t ion  is the crucial step towards an 
efficiently dis tr ibuted program for M I M D  computers.  

• If the n u m b e r  of jobs is reduced due to the communica t ion  optimizat ion,  the 
farm cannot  retain a good load balance. The losses due to a load inbalance,  
however, are usually larger than losses due to communica t ion  overhead. 
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